• ANÁLISIS MULTIVARIANTE DE DATOS

    CÓMO BUSCAR PATRONES DE COMPORTAMIENTO EN BIG DATA

    MATEOS-APARICIO MORALES, GREGORIA / HERNÁNDEZ ESTRADA, ADOLFO PIRAMIDE Ref. 9788436843989 Veure altres productes de la mateixa col·lecció Veure altres productes del mateix autor
    En el mundo cada vez más complejo en el que vivimos, la revolución que está cambiando nuestra vida es la capacidad de utilizar grandes bases de datos, lo que permite prever en la sociedad reacciones a las acciones que políticos o empresarios pueden tomar. Esta revolución es la posibilidad de usar de...
    Dimensions: 240 x 190 x 18 cm Peso: 582 gr
    Disponible en 7 dies
    35,95 €
  • Descripció

    • ISBN : 978-84-368-4398-9
    • Encuadernació : RUSTICA
    • Data de Edició : 01/02/2021
    • Any de edició : 2021
    • Idioma : Español, Castellano
    • Autors : MATEOS-APARICIO MORALES, GREGORIA / HERNÁNDEZ ESTRADA, ADOLFO
    • Nombre de pàgines : 304
    • Col·lecció : ECONOMIA Y EMPRESA
    En el mundo cada vez más complejo en el que vivimos, la revolución que está cambiando nuestra vida es la capacidad de utilizar grandes bases de datos, lo que permite prever en la sociedad reacciones a las acciones que políticos o empresarios pueden tomar. Esta revolución es la posibilidad de usar de manera inteligente millones de datos que permiten crear un radar para modelizar mercados y sociedades (para bien y para mal). Estos modelos pueden servir para ayudar a ciudadanos y consumidores o, por el contrario, para manipularlos. Es tan radical este cambio como lo fue la invención del radar, que se podía usar tanto para la paz como para la agresión.
    En esta obra se hace una revisión de los principales métodos de análisis multivariante de datos con el objeto de que estudiantes, investigadores y profesionales adquieran los conocimientos suficientes para utilizarlos adecuadamente en la predicción y la toma de decisiones en la empresa, y como herramienta estadística imprescindible para encontrar patrones de comportamiento en las grandes bases de datos del Big Data.
    Estas herramientas son el análisis factorial, el análisis de componentes principales, el análisis clúster o de conglomerados, el análisis discriminante y el análisis de regresión logística. Se analizan las relaciones entre las variables de un conjunto de datos para resumir la información que recogen, mediante un pequeño conjunto de variables teóricas o latentes que faciliten la interpretación del comportamiento de la población de la que se han extraído los datos. También se estudian las similitudes entre los individuos o casos para formar grupos de clasificación con características similares. Por último, se aborda el estudio de grupos definidos en la población, con el fin de investigar su caracterización en función de las variables recogidas y la forma de hacer predicciones para asignar casos nuevos a los grupos.

Este sitio web almacena datos como cookies para habilitar la funcionalidad necesaria del sitio, incluidos análisis y personalización. Puede cambiar su configuración en cualquier momento o aceptar la configuración predeterminada.

política de cookies

Esenciales

Las cookies necesarias ayudan a hacer una página web utilizable activando funciones básicas como la navegación en la página y el acceso a áreas seguras de la página web. La página web no puede funcionar adecuadamente sin estas cookies.


Personalización

Las cookies de personalización permiten a la página web recordar información que cambia la forma en que la página se comporta o el aspecto que tiene, como su idioma preferido o la región en la que usted se encuentra.


Análisis

Las cookies estadísticas ayudan a los propietarios de páginas web a comprender cómo interactúan los visitantes con las páginas web reuniendo y proporcionando información de forma anónima.


Marketing

Las cookies de marketing se utilizan para rastrear a los visitantes en las páginas web. La intención es mostrar anuncios relevantes y atractivos para el usuario individual, y por lo tanto, más valiosos para los editores y terceros anunciantes.